Meetings

The 19th Pacific Basin Nuclear Conference (PbNC) provided a forum for Pacific Rim countries to share their experience and help advance nuclear’s role worldwide.

The 19th PbNC, held August 24–28 in Vancouver, British Columbia, Canada, provided an opportunity for meeting attendees to hear about the accomplishments of the nuclear industries in several of the leading Pacific Basin nuclear countries.

To open the conference, Tim Gitzel, president and chief executive officer of Cameco and the meeting’s honorary chair, introduced the first keynote speaker, Kelly Block, member of Parliament and parliamentary secretary to Canada’s minister of natural resources. Welcoming the delegates to Canada on behalf of the government, Block stressed that the Canadian government is very supportive of the nuclear industry.

Nearly 15 percent of Canada’s electricity and over 50 percent of Ontario’s, the most populous province, is nuclear generated, which, according to Block, means that Canada’s electricity supply is among the cleanest in the world.

Block also noted that Canada is the world’s second-largest producer of uranium, all of which is mined in her home province of Saskatchewan. Regarding the uranium market, last year marked the first deliveries of yellowcake to China under multiyear, multibillion dollar agreements with Cameco, she said. This was made possible by the supplementary protocol to the nuclear cooperation agreement between the countries that entered into force in January 2013.

The government has also taken steps to reinvigorate Canada’s nuclear industry. Among the many benefits of that reinvigoration is a recent agreement—signed by the Canadian vendor Candu Energy and a Chinese engineering company—that calls for the construction of two new CANDU units at the Cernavoda nuclear plant site in Romania. At the same time, Candu Energy’s parent company, SNC-Lavalin, signed a memorandum of understanding with China National Nuclear Corporation for cooperation in several areas, including the development of Advanced Fuel CANDU Reactor technology to use recycled uranium and thorium fuel in China, and the pursuit of other international project opportunities. These projects, she said, have the potential to generate billions of dollars.

Other government-led initiatives that Block mentioned include the following:

- In order to bring private sector efficiencies into the management of the nuclear laboratories of Atomic Energy of Canada Limited, the government is introducing a government-owned, contractor-operated model.
- Steps have been taken to encourage investment in Canada through a significant modernization of the regulatory framework for major resource projects. As a result, potential investors will see a much more predictable permitting process.
- In January, the government introduced the Energy Safety and Security Act. This legislation maintains the key principle of absolute and exclusive liability of operators of nuclear facilities for civil injury and damage. The compensation available to address civil nuclear damage will increase from Can$75 million (about $67 million) to Can$1 billion (about $900 million), bringing Canada’s regime more in line with international standards. The legislation will also permit Canada’s ratification of the international Convention on Supplementary Compensation.
- On the important issue of long-term management of radioactive waste, the Nuclear Waste Management Office is working with potential host communities in Ontario and Saskatchewan on the siting of a long-term management facility for spent fuel, while an Ontario Power Generation (OPG) proposal for a deep geological repository for low- and intermediate-level waste is undergoing regulatory review (see page 34, this issue).

These measures, Block noted, are also aimed at reinforcing public confidence in the safety and security of the nuclear in-

PACIFIC BASIN NUCLEAR CONFERENCE
The nuclear industry’s willingness to share experience, including personal and organizational failings, serves to strengthen it. This can be seen in the institutions that serve the industry.

refurbishment will be for enhancing Canada’s reputation and driving the province’s supply chain forward for decades to come. “But we have more to offer,” he said, which is why OPG created Canadian Nuclear Partners to market the company’s nuclear expertise. This, he added, is the type of innovation that can drive nuclear’s growth.

This is a critical time for the industry, Tremblay said, which is why it is necessary to continue the safe, reliable, and cost-effective operation of existing plants and to
Wei Suo, senior vice president of China’s State Nuclear Power Technology Corporation (SNPTC), discussed China’s nuclear power development program, providing a brief history (very similar to one provided by China’s Jiang Mianheng at the opening plenary session of the ANS Annual Meeting held in Reno, Nev., in June; see NN, Aug. 2014, p. 149) and describing the program’s current status.

Wei noted that in 2006, China introduced Westinghouse AP1000s into its plans as “supporting projects” while the country developed a third-generation capability, with Chinese and American companies working together. Currently, the construction of Sanmen-1, the lead of four AP1000 units, is over 99 percent complete, with 74 of 226 nuclear island system packages having been turned over to operational staff for testing. The main control room has also been put into service. Sanmen-1 and Haiyang-1 are expected to be connected to the grid at the end of 2015, and their twin units at the end of 2016.

According to Wei, the construction of the AP1000 supporting projects has allowed China to establish a third-generation nuclear power industrial system, develop the complete equipment supply chain, complete the standard design of a localized AP1000, and prepare for large-scale construction of the localized design.

At the time of the PBNC meeting, China had 21 reactors connected to the grid and 27 units under construction. Under the latest national development plan, a number of AP1000s and CAP1400s are to be constructed while research is carried out on future technologies, including sodium-cooled fast reactors, high-temperature reactors, and advanced fuel cycles.

Currently, Wei said, the government has approved eight AP1000 follow-up projects, and the sites have been prepared to start construction, including second-phase projects at Sanmen and Haiyang. Three additional two-unit sites have completed their “technical” preparation and are awaiting approvals.

The goal of China’s CAP1400 project, Wei said, is to develop the technology with independent intellectual property rights and to undertake a two-unit demonstration project at Rongcheng, in Shandong Province. The CAP1400 draws on 30 years of experience in pressurized water reactor research and development, design, construction, and operation and absorbs the advanced technology of the AP1000 and the experience and lessons learned from building the first units. It also adopts measures to enhance plant safety margins based on lessons learned from the accident at Fukushima Daiichi.

The basic design of the CAP1400, a large-scale advanced pressurized water reactor, was completed in 2011 and was approved by the Chinese government in January 2014, Wei said. Contracts for 25 of 29 long-lead-time items for the first demonstration plant have been signed, and site preparation is being carried out as planned.

Wei also provided a brief description of SNPTC, which, he said, was established in 2007 to create a self-reliant nuclear power technology capability. Its initial tasks included introducing the AP1000 technology to the country, leading the development of the CAP1400, and forming a national proprietary brand of nuclear power technology. The company is now working on the preliminary R&D for a CAP1700 reactor and for SMRs.

SNPTC’s vision, Wei said, is to build an innovative, modern, state-owned enterprise with leading-edge core technology capability. The company also upholds the idea of open cooperation, with mutual benefits for partners at home and abroad, and achieving “win-win” results.

SMRs for the future

Small modular reactors were a main topic of a session on advanced reactor technologies. The session was chaired by John Kelly, U.S. deputy assistant secretary for nuclear reactor technologies, who is responsible for reactor research and development programs, including new reactor concepts, such as SMRs and Generation IV systems.

Kelly referred to President Obama’s commitment to developing the use of clean energy sources and the challenge he set for the DOE: for the United States to generate 80 percent of its electricity from clean sources by 2035. Furthermore, Kelly said, the president’s “all-of-the-above” energy strategy, in which nuclear energy is a major component, is not a slogan but a strategy to develop clean energy and at the same time develop the new technologies and high-quality jobs that go with it.

Kelly cited a 2010 survey that found that about 40 percent of U.S. electricity was generated by clean sources. The business-as-usual scenario could take that figure up to 43 percent in 2035. To improve on that, Kelly said, progress will have to be made in a number of clean technologies, such as carbon sequestration, nuclear generation, and renewables. In 2010, these were not seen as having much potential to displace coal by 2035. The mission was then set to move the technologies forward so that by the early 2020s, they could be deployed to help meet the 2035 goal.

Interestingly, Kelly said, SMRs were not given any credit at all in the 2010 projections, largely because no designs had yet been finalized. To change that, the promotion of SMR design certification became one of the DOE’s objectives.

Kelly said that it is clear that new nuclear development has many challenges: Capital costs are very high, natural gas prices are currently very low, some uncertainty still exists about what rules and regulations will come about as a result of Fukushima, and a question mark still hangs over waste disposal.

For these reasons, the United States is looking at SMRs as a potential game changer, as they have many potential benefits, including the possibility of generating a whole new line of business. First and foremost, Kelly said, SMRs can provide improved safety beyond the Generation III+ designs, largely because of the relatively greater volume of water available to remove decay heat. In addition, not only is the capital cost of small reactors lower, but the project risk is less, which in turn will reduce the interest rate at which a utility will have to borrow.

The DOE seeks an opportunity for the
United States to take the technical leadership in this area, Kelly said. Also, he noted, the United States is committed to promoting this technology internationally, as it can provide a real breakthrough in terms of clean energy production.

The DOE’s support for SMRs, Kelly said, is focused on helping to take designs through the Nuclear Regulatory Commission’s reactor design certification process, which is the gold standard for licensing. Through a structured cost-share program with industry, the department will provide financial assistance for engineering, cost estimating, design certification, and other activities to help accelerate the deployment of these technologies.

Two vendors, NuScale and mPower, were the first to be selected for this program, but, Kelly explained, the aim is more ambitious than just ensuring that a few units are built. The DOE is also looking at additional mechanisms to help deploy SMRs with the greater goal of creating a factory fabrication situation to allow for the deployment of a fleet of SMRs.

In summary, Kelly said that the DOE is committed to its SMR program, aiming for the deployment of the technology in the 2022–2025 time frame. “We are going to continue our efforts to create a market for the SMRs through various incentives for our utility industry,” he said.

Global challenge of SMRs

Adi Paterson, chief executive officer of the Australian Nuclear Science and Technology Organization (ANSTO), said that he wants to start a discourse on how to bring SMRs to new nuclear adopter nations. While Paterson is now leading Australia’s nuclear research activities, he was previously general manager of business development and operations at Pebble Bed Modular Reactor (Pty) Ltd. in South Africa. Over the years, he has considered some of the real challenges facing the adoption of this technology, particularly in the emerging world.

“We need to dream bigger” about the future of these reactors, Paterson said. SMRs can make a big contribution to the global expansion of clean energy production by allowing emerging nations—where the greatest expansion in electricity demand is expected—to embrace nuclear energy. He said he would like to see real plans put in place for these and other countries to replace their old coal-fired plants with SMRs.

In particular, Paterson looked at the large and densely populated countries where the vast majority of people live. There is a compelling logic, he said, for those countries to adopt the highest density energy sources to ensure that they can get reliable, assured supplies of electricity. “Dilute sources do not really play well in high-density countries,” Paterson said, referring to countries such as Bangladesh, Indonesia, Pakistan, and Vietnam. They will need to build their energy architecture around low-carbon sources, he said, and the only known reliable way to do that is with hydropower or nuclear baseload.

Paterson also considered communities that would particularly benefit from SMRs—for example, the 52 small island states, such as Papua New Guinea, which typically pay seven to 10 times more for their electricity than advanced countries. These states could benefit from ship-based SMRs, but, he noted, most of them are very antinuclear.

SMRs are attractive because the initial capital outlay is smaller and more easily obtained than that for large units. Furthermore, Paterson said, because units can be constructed in a predictable way as the baseload increases, the capital outlay can be arranged more easily and cheaply, as the early units constructed can generate income as new ones are added. That fundamentally changes the capital structure in a very attractive way, allowing access to larger-scale banking systems and country-to-country
agreements that would support that type of build. Paterson said that this valuable benefit is not very well appreciated.

Paterson also stressed the benefit of a fleet concept. He said that at a meeting of stakeholders in Jordan, he was amazed to find that the financial community sees the first SMRs as having the usual risk of a first-of-a-kind reactor. He wants to change the thinking about SMRs from first-of-a-kind reactor to first-of-a-fleet of reactors.

There are many barriers to introducing nuclear power and maintaining a program, Paterson said, and emerging countries may be put off by the journey to adopt even an SMR. Issues such as the establishment of the regulatory architecture and other infrastructure can be quite daunting, he noted, which led him to mention solutions that have not had much traction in the past, such as developing a shared global approach to licensing.

An important issue relates to the fuel cycle, particularly fuel provision and disposal for nonnuclear countries, Paterson said, and this is why “buy-burn-return” fuel concepts look very attractive. He said that he believes that a conversation about creating a different type of fuel supply is needed.

Paterson also explained why nuclear safety is not a crucial selling point in the sense that today, the assumption is that any reactor being offered will meet international safety standards. The safety benefits of SMRs over large units, therefore, are not going to be a determining factor. What it does, he said, is “get you to the table.” What utilities want is a reliable electricity supply at a predictable cost. Similarly, other stakeholders, such as banks, credit agencies, and sovereign risk guarantors, are not exercised by the safety question, but by reliability and availability. The sooner SMRs are built and their capabilities demonstrated, he said, the quicker they can be sold.

Generally, Paterson said, the critical elements of the case to sell to new adopter countries are really issues such as regulation, public engagement, workforce, financing, sovereign risk, credit, and risk mitigation. It is important, he said, to gain the support of the population, which means engaging with people in a real debate about energy.

Finally, Paterson said that he dreams of seeing many of these “elegant” machines built in the future, and he hopes that his vision is realized in this generation.

Telling nuclear’s story

The final plenary session of the meeting, “Telling Our Story,” was cochaired by Mimi Limbach, managing partner of Potomac Communications Group (PCG), and Kune Y. Suh, professor of nuclear engineering at Seoul National University. Limbach is the new president of the Pacific Nuclear Council (PNC), and Suh is president-elect.

Limbach presented the PNC-PCG Benchmarking Survey that was conducted in 2012 by the PNC Communications Working Group, which she chairs. The survey focused on the perceptions of nuclear energy communicators from the Pacific Rim in order to understand the support nuclear gets from policy makers and the public in these countries. The aim was to assess what people think about nuclear energy and how much they know, and to determine what the most effective communication tactics are. The survey found several trends, and while at that time there was a growing use of social media, most communicators were still focused on print media.

In 2012, the general public was considered the top audience for communicators, with news media second and government officials third. In 2014, this shifted slightly, with media at the top and the general public behind by just one percentage point. A surprising result was that regulators were no longer high on the list.

There has been a shift in the topics that communicators are interested in, Limbach said, and while safety remains the top concern, more focus is being placed on the health effects of nuclear energy, pollution, and emergency preparedness. No doubt, she said, this is all because of the way the news media have covered the Fukushima Daiichi story. Radiation continues to be a very important topic.

There has also been a shift in tactics over the past two years. In 2012, a large number of respondents viewed counteracting misleading information as the most important tactic. Today, crisis communications, including developing a crisis communications plan and being able to carry it out in an emergency, is at the top of communicators’ agenda, although counteracting misinformation is still very high.

In 2014, Limbach noted, there is more interest in digital communications than traditional print, with greater interest in social media and significant effort being spent on updating and improving websites.

One of the requests in the survey was that respondents share a best practice, she said. Number 1 of the many provided was using infographics and shareables, which are small infographics that can be used on Twitter and Facebook. Respondents also agreed that their biggest challenge is making technical information understandable, and, Limbach said, there are real opportunities for the PNC and those in attendance at the conference to help them do that. “We all have a lot of work to do,” she said.

Next to speak was Suh, who emphasized that without public acceptance, moving forward is very difficult. Korea embarked late in seeking public acceptance, he said, and is now paying a high price.

Suh said he thought it would be useful to relate his conversion from teaching nuclear engineering to preaching the nuclear gospel. In 2006, when North Korea set off its first nuclear test, the Korean Broadcasting System (KBS) asked Suh to talk about what was taking place. He soon realized how difficult but important it is to speak to people in plain language. On the use of figures, Suh remarked that while “10^-6” is a valid expression when talking about risk, it is better to say “once in a million years.”

When the Fukushima accident occurred, Suh was again on KBS talking about what happened over the course of the first 72 hours. No one was really sure what was happening, he said, but having previously been involved in developing core melt propagation calculations, Suh did some back-of-the-envelope calculations and came up with the notion that Units 1–3 probably had gone to core melt. Suh said that it was very simple; more important, he said, was that the government of Japan and the Tokyo Electric Power Company didn’t admit it for

Fukushima dealt a hard blow to the Korean nuclear industry, leading the government to reduce nuclear’s capacity target from a 41 percent share of the total in 2030 down to 29 percent. Nonetheless, that is still nearly twice the current capacity level.

Suh

Limbach
six months.
That was the beginning of his career as a nuclear preacher, he said.
Fukushima dealt a hard blow to the Korean nuclear industry, Suh said, leading the government to reduce nuclear’s capacity target from a 41 percent share of the total in 2030 down to 29 percent. Nonetheless, that is still nearly twice the current capacity level. In the meantime, the nuclear industry experienced a major setback when a large number of counterfeit quality certificates and other fraudulent documents were found at nuclear plants. Furthermore, due to the number of plant shutdowns forced by the scandal, Korea was on the brink of a national blackout for a time.
The industry, however, is recovering from this, Suh said, by choosing not to hide, being open about bad practices at the plants, and moving forward. As far as he is concerned, Korean nuclear power is coming back: “It is slow but it is happening,” he said.

Changing the conversation
In introducing Michaele “Mikey” Brady Raap, president of the American Nuclear Society, Limbach remarked that her agenda for ANS has a focus on improving communications.

Brady Raap said that what is important to her and for the industry is for ANS to take on the responsibility of telling the story about the promise of nuclear energy to the public. For this, she said, remarkable resources are available, including ANS’s network of local and student sections across the United States, as well as nine local sections in other countries (four of them in Asia).

This year is the 60th anniversary of ANS, she said, and a lot has changed over the years regarding communications. Besides technical innovations, the questions that the public asks are different, as are the messages once considered most important. While ANS has more ways to reach people, so do the antinuclear forces. Therefore, she said, to be more effective as communicators, ANS members must be more focused and able to present the intended messages in a way that is “digestible and understandable.” She declared that ANS must improve on the way it has been doing this work.

So, what is different? In the past, considerable effort was spent on reacting to events, which Brady Raap said is very different from responding to events. The focus has been on trying to correct misunderstandings; the goal now is to move forward and to be proactive.

This new approach called for developing a communications strategic plan based on ANS industry surveys, on the experience that communicators brought to the society, and on the objectives and goals set by ANS.
The question of how to promote its message led ANS to launch the Center for Nuclear Science and Technology Information website (<nuclearconnect.org>). Studies were organized to get a better idea of what the content of the website should be, and to ensure that the responses are coordinated. The idea is not just to inform, but to engage in conversation. The website allows users to ask questions, with expert answers provided, she said.

To improve “our messaging,” Brady Raap said, the main message was broken down into three parts:

- **Radioactivity is a natural part of our world**: There is no difference between naturally occurring radioactivity and that produced by nuclear power or as a by-product of isotope production. It is the same radioactivity in the ground that is absorbed into the plants and fruit we eat, and that is in coal and is released when the coal is burned.
- **Nuclear technology works, and works safely**: Safety is a fundamental part of our profession and a basic tenet in regulation and design.

Continued
Nuclear technology enhances our quality of life: There is a widely demonstrated correlation between the availability of electricity and living standards.

Brady Raap also mentioned other communication activities at ANS, including spokesperson training, which was developed to teach key people such things as how to respond, how to react, and how to be on camera. ANS has been developing social media capabilities for several years, using Facebook and Twitter, and also hosts the ANS Nuclear Cafe blog. The society’s Congressional Seminar Series for congressional-staffers has been very successful, she said. The idea, Brady Raap said, is to make staffers feel more comfortable when nuclear issues cross their desks. ANS also conducts teacher workshops.

Brady Raap also mentioned that local and student sections undertake grassroots activities, such as appearing at public meetings and demonstrations, and that the society’s public education tools have been updated. These and the ANS position statements have been redesigned for greater impact.

The next speaker, Lixin Shen, is deputy secretary-general of the Chinese Nuclear Society (CNS), which will be hosting the next PBNC in Beijing in 2016. Regarding public acceptability of nuclear, he made the point that along with social and economic development in China, public awareness of environmental protection and concerns about nuclear safety have grown. After Fukushima, the public became more sensitive to the project. This was a powerful message to the nuclear industry, as well as to the government.

CNS’s role in fostering public acceptance has been one of its top priorities since its founding in 1980, just as China’s leaders were beginning to open up the country. Its Committee on Science Popularization, Consultation and Education, which has 46 members, is responsible for general planning and guidance related to CNS activities in this area. This focus is not surprising, Shen said, since the government’s 2002 adoption of the Law on Science Popularization, which directs scientific and technical societies to play a major role.

One activity that has become a hallmark of CNS is the staging of nuclear exhibitions. The first such event was the Exhibition on Nuclear Science and Applications, held in 1983 in Beijing. It included traditional technical exhibits that demonstrated areas such as nuclear knowledge and applications in industry, agriculture, medicine, and electricity generation. This first exhibit attracted some 70,000 visitors and was followed by similar events in other cities in subsequent years.

A particularly important event, Shen said, was organized in 1986 in Hong Kong during the construction of the first unit at the Daya Bay nuclear station. Millions of Hong Kong citizens, he said, were opposed to the project. In response, CNS staged a month-long exhibition that included technical lectures and drew 80,000 visitors. According to Shen, the feedback was very good, and, he noted, the Daya Bay project continued.

In more recent years, CNS has been hosting the “Nuclear Industry China” event every two years. It is not only an exhibition, but also provides a platform for technical seminars and science popularization.

Following Shen was Scott Peterson, senior vice president of communications at the Nuclear Energy Institute, who stressed the importance of doing research in order to understand the audience being addressed and how to communicate to that audience. He also emphasized that while traditional communication channels remain important, organizations have to utilize the new channels, figuring out which work best in terms of communicating to their core audiences.

NEI is charged with communicating with opinion makers and opinion leaders, as its role is to affect policy, whether legislative or regulatory policy on the federal or state level. Peterson said that NEI always keeps in mind its two core objectives: keeping existing plants operating, and building new nuclear facilities. He noted that in some competitive markets in the United States, keeping reactors operating is a challenge due to cost pressures from other generating sources or in states with large renewables portfolio standards.

In addition to creating the right message, Peterson said, one of the most important aspects of what NEI does in communications is identifying the right messenger. According to one survey that tracks “trusted sources of information,” many delegates at the PBNC would be high on the list, he said, as the category of “technical expert” is at number 2. At number 3, however, is the category “person like yourself,” which shows that members of the public also want to hear from people who are like themselves. Since 2009, the “person like yourself” category rose 15 percent. Another astonishing result, he said, is that while people still want to hear from chief executive officers, they also now want to hear from the “regular employee,” a category whose rating went up by 20 percent. This, Peterson added, is why it is important for all employees to be armed with messages and facts.

Peterson listed the following most important questions for developing a communication plan:

- What is the desired outcome?
- What is the environment in which you are communicating? Have you researched your audiences and messages?
Nuclear technology is a fantastic story of human achievement, but on the whole, the industry has not done a great job of telling it. Since the 1960s, there have been long periods of “mediocrity.”

Canadians said ended up in a very thick book that formed the starting point for the repository siting process, which continues today.

Whitlock sees poor communication as a reason for the industry’s failure to reach its full potential over many decades. He also pointed to its role in what happened in Japan around the Fukushima accident, where thousands of people suffered and many died as a result of fear and dread and of unnecessary measures being taken, such as relocating people based on poor communication about radiation risks.

Whitlock described three perception barriers to nuclear communication that communicators have not done a good job of addressing: a cultural fear of nuclear; a sociopolitical bias (there is no natural constituency on the political spectrum for nuclear); and an information bias (it is difficult for the public to deal with contradictory views on technically complicated information).

Going forward, Whitlock said that he sees some hope. In Canada, efforts are under way to bring the nuclear leadership together to solve some of these problems. He believes that consistent and expanded engagement with the public based on listening and trust is needed. He also believes that research and development activity in a country should include providing knowledge and understanding to allay public fears. Communication, he said, “is a responsibility we owe to the people.”—Dick Kovan

Jeremy Whitlock, Atomic Energy of Canada Limited’s manager of nonproliferation and safeguards and the communications director for the Canadian Nuclear Society, ended the session with, “The Promise and Peril of Public Nuclear Communication.” Nuclear technology is a fantastic story of human achievement. Whitlock said, but on the whole, the industry has not done a great job of telling it. Since the 1960s, there have been long periods of “mediocrity,” as communication tended to focus on short-term needs.

An event in Canada that had a profound impact on the industry, as well as on communications, Whitlock said, was the release in 1998 of an environmental review of a proposed deep geologic repository. The review panel found that the proposal was demonstrated to be acceptable from a technical perspective, but not from a social perspective. That was the first time, Whitlock laid out so boldly. “It hit us like a hammer in the head,” he said, as someone was officially saying that the social perspective was very important. Whitlock rephrased this to say that nuclear projects must achieve a “social license” from the public. This is where good communication is essential, he added.

The lessons learned from this review led to the government’s creation of the Nuclear Waste Management Organization (NWMO), whose initial three-year mission was “to go out and boldly listen to Canadians.” NWMO sent people coast to coast to do just that. “It was a painful process,” Whitlock said. But those involved listened, and everything that

...